Project A1 - Magnetostrictive Multilayers for Magnetoelectric Sensors

The main goal of the project is to advance the limit of detection of current and future ME sensor approaches. For this, the project focuses on the design of novel low-noise sputter-deposited magnetostrictive multilayers deployed as the piezomagnetic phase for advanced magnetoelectric (ME) sensor structures. Within the project, we are investigating concepts to individually tune the multilayers’ properties and magnetic domain structure to the various ME sensors employed in the CRC. For this, different concepts using ferromagnetic and antiferromagnetic layers, interlayer exchange coupling, lateral patterning, and magnetic hard bias are combined. Magnetic anisotropy alignment and strength induced during film deposition and the control thereafter play a decisive role for influencing the ME sensor performance.

The aimed magnetic material properties are tuned for the various sensor concepts. This especially, includes electrically modulated (project A7) and surface acoustic wave based ME sensors (project A9), but also includes ΔE-effect sensors (project A4) and involves interactions with project A10.


Involved Researchers

Person Role
Prof. Dr. Jeffrey McCord
Materials Science
Nanoscale Magnetic Materials
Project lead
Dr. Dirk Meyners
Materials Science
Inorganic Functional Materials
Project lead
M.Sc. Dennis Seidler
Materials Science
Nanoscale Magnetic Materials
Doctoral researcher
M.Sc. Lars Thormählen
Materials Science
Inorganic Functional Materials
Doctoral researcher


Role within the Collaborative Research Centre

Project A1 plays a central role within the CRC to achieve an improved limit of detection, which is essential to the measurements of the targeted biomagnetic signals. We will collaborate closely on the sensor fabrication and magnetic characterization with the groups in research area A. Magnetic characterization and domain imaging is done particularly with A4, A7 and A9. A strong cooperation on integration issues is conducted with Z1. Furthermore, project A1 contributes to the focus group F1 - Magnetic Layers on issues of the magnetostrictive phase for ME sensors and to the focus groups F3 - Comparison of Sensor Concepts, F5 - Concepts based on Delta-E Effect, and F4 - ME Sensors. Collaborations with the following projects are established:

A4 (ΔE-Effect Sensors) Research on advanced magnetic multilayers for ΔE-effect sensor. Assistance with deposition and magnetic characterization of ΔE-effect sensors is provided.
A6 (Microstructure and Structural Change of Magnetoelectric and Piezotronic Sensors) Amorphous and structural properties (radial distribution function analysis, chemical composition).
A7 (Electrically Modulated Magnetoelectric Sensors) Research on advanced magnetic multilayers for converse magnetoelectric sensors. Cooperation on time-resolved investigations of the magnetic domain evolution of electrically modulated ME sensors.
A8 (Modelling of Magnetoelectric Sensors) Cooperation on modeling regarding optimal magnetic film properties.
A9 (Surface Acoustic Wave Magnetic Field Sensors) Research on advanced magnetic layers for SAW sensors. Cooperation on time-resolved imaging.
A10 (Magnetic Noise of Magnetoelectric Sensors) Cooperation on magnetic noise effects in ME sensors. Magnetic layers for stress initiated effects.
B1 (Analog Signal Processing) Noise studies and tailoring the ME response with regard to the frequency modulation technique and simultaneously controlling the magnetic domain state.
Z1 (MEMS Magnetoelectric Sensor Fabrication) Integration of novel magnetostrictive multilayers into ME devices. Cooperation on powder magnets for hard bias and sensor integration. Wafer-cut ME sensors for advanced magnetic multilayers.
Z2 (Magnetoelectric Sensor Characterization) Supportive ME measurements regarding noise density and limit of detection.


Project-related Publications

J. Arbustini, J. Muñoz, H. Wang, E. Elzenheimer, J. Hoffmann, L. Thormählen, P. Hayes, F. Niekiel, H. Heidari, M. Höft, E. Quandt, G. Schmidt, A. Bahr: MEMS Magnetic Field Source for Frequency Conversion Approaches for ME Sensors, BMT2022 , Joint Annual Conference of the Austrian, German and Swiss Societies for Biomedical Engineering, 2022. 
S. Moench, J. M. Meyer, A. Žukauskaitė, V. Lebedev, S. Fichtner, J. Su, F. Niekiel, T. Giese, L. Thormählen, E. Quandt, F. Lofink: AlScN-Based SAW Magnetic Field Sensor for Isolated Closed-Loop Hysteretic Current Control of Switched-Mode Power Converters, IEEE Sensors Letters, vol. 6, no. 10, pp. 1-4, 2022. 
C. Müller, P. Durdaut, R. B. Holländer, A. Kittmann, V. Schell, D. Meyners, M. Höft, E. Quandt, J. McCord: Imaging of Love Waves and Their Interaction with Magnetic Domain Walls in Magnetoelectric Magnetic Field Sensors, Advanced Electronic Materials, 2200033, 2022.
J. M. Meyer, V. Schell, J. Su, S. Fichtner, E. Yarar, F. Niekiel, T. Giese, A. Kittmann, L. Thormählen, V. Lebedev, S. Moench, A. Žukauskaitė, E. Quandt, F. Lofink: Thin-Film-Based SAW Magnetic Field Sensors, Sensors, vol. 21, no. 24, 8166, 2021.
L. Thormählen, D. Seidler, V. Schell, F. Munnik, J. McCord, D. Meyners: Sputter Deposited Magnetostrictive Layers for SAW Magnetic Field Sensors, Sensors, vol. 21, issue 24, 8386, 2021.
F. Block, F. Klingbeil, S. Deshpande, U. Sajjad, D. Seidler, C. Arndt, S. Sindt, C. Selhuber-Unkel, J. McCord: Unidirectional Transport of Superparamagnetic Beads and Biological Cells Along Oval Magnetic Elements, Applied Physics Letters, vol. 118, issue 23, 232405, 2021.
B. Spetzler, E. V. Golubeva, R.-M. Friedrich, S. Zabel, C. Kirchhof, D. Meyners, J. McCord, F. Faupel: Magnetoelastic Coupling and Delta-E Effect in Magnetoelectric Torsion Mode Resonators, Sensors, vol. 21, no. 6, 2021.
J. Su, F. Niekiel, S. Fichtner, L. Thormaehlen, C. Kirchhof, D. Meyners, E. Quandt, B. Wagner, F. Lofink: AlScN-Based MEMS Magnetoelectric Sensor, Applied Physics Letters, vol. 117, issue 13, 132903, 2020.
S. M. Curtis, N. Wolff, D. Dengiz, H. Lewitz, J. Jetter, L. Bumke, P. Hayes, E. Yarar, L. Thormählen, L. Kienle, D. Meyners, E. Quandt: Integration of AlN Piezoelectric Thin Films on Ultralow Fatigue TiNiCu Shape Memory Alloys, Journal of Materials Research 35, no. 10, pp. 1298–1306, 2020.
S. Salzer, V. Röbisch, M. Klug, P. Durdaut, J. McCord, D. Meyners, J. Reermann, M. Höft, R. Knöchel: Noise Limits in Thin-Film Magnetoelectric Sensors With Magnetic Frequency Conversion, IEEE Sensors Journal, vol. 18, no. 2, pp. 596-604, 2018.
A. Kittmann, P. Durdaut, S. Zabel, J. Reermann, J. Schmalz, B. Spetzler, D. Meyners, N. X. Sun, J. McCord, M. Gerken, G. Schmidt, M. Höft, R. Knöchel, F. Faupel, E. Quandt: Wide Band Low Noise Love Wave Magnetic Field Sensor System, Scientific Reports, vol. 8, no. 278, 2018.
P. Durdaut, S. Salzer, J. Reermann, V. Röbisch, J. McCord, D. Meyners, E. Quandt, G. Schmidt, R. Knöchel, M. Höft: Improved Magnetic Frequency Conversion Approach for Magnetoelectric Sensors, IEEE Sensors Letters, vol. 1, no. 3 , 2017.
P. Durdaut, S. Salzer, J. Reermann, V. Röbisch, P. Hayes, A. Piorra, D. Meyners, E. Quandt, G. Schmidt, R. Knöchel, M. Höft: Thermal-Mechanical Noise in Resonant Thin-Film Magnetoelectric Sensors, IEEE Sensors Journal, vol. 17, no. 8, pp. 2338-2348, 2017.
S. Salzer, P. Durdaut, V. Röbisch, D. Meyners, E. Quandt, M. Höft, R. Knöche: Generalised Magnetic Frequency Conversion for Thin Film Laminate Magnetoelectric Sensors, EEE Sensors Journal, vol. 17, no. 5, pp. 1373-1383, 2017.
V. Röbisch, S. Salzer, N. O. Urs, J. Reermann, J. Yarar, A. Piorra, C. Kirchhof, E. Lage, M. Höft, G. Schmidt, R. Knöchel, J. McCord, E. Quandt, M. Meyners: Pushing the Detection Limit of Thin Film Magnetoelectric Heterostructures, Journal of Materials Research, vol. 32, issue 6, pp. 1009-1019, 2017.
M. Abes, C. T. Koops, S. B. Hrkac, J. McCord, N. O. Urs, N. Wolff, L. Kienle, W. J. Ren, L. Bouchenoire, B. M. Murphy, O. M. Magnussen: Domain Structure and Reorientation in CoFe2O4, Physical Review B 93 , 195427, 2016.